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Abstract. Impressive pictures of moving Bose-Einstein condensates have been taken using phase-contrast
imaging [M.R. Andrews et al., Science 273, 84 (1996)]. We calculate the quantum backaction of this
measurement technique, assuming the absence of residual absorption. We find that the condensate gets
gradually depleted at a universal rate that is proportional to the light intensity and to the inverse cube
of the optical wave length. The fewer atoms are condensed the higher is the required intensity to see
a picture, and, consequently, the higher is the induced backaction. To describe the quantum physics of
phase-contrast imaging we put forward a new approach to quantum-optical propagation. We develop an
effective field theory of paraxial optics in a fully quantized atomic medium.

PACS. 03.75.Fi Phase coherent atomic ensembles; quantum condensation phenomena —

03.65.Bz Foundations, theory of measurement, miscellaneous theories (including Aharonov-Bohm effect,
Bell inequalities, Berry’s phase) — 42.50.Dv Nonclassical field states; squeezed, antibunched,

and sub-Poissonian states; operational definitions of the phase of the field; phase measurements

1 Introduction

Bose-Einstein condensates are macroscopic quantum
states of many atoms with nearly identical wave func-
tions. In addition to their prospects as laser-like sources
of matter, the condensates will offer a new fascinating
testing ground for the fundamentals of quantum mechan-
ics, because of their macroscopic yet quantum nature.
In all experiments performed so far since the pioneer-
ing breakthrough [1] Bose condensates are observed opti-
cally. One particularly intriguing method is phase-contrast
imaging [2,3]. This technique allows to take impressive
in situ pictures of moving droplets of Bose-condensed mat-
ter, similar to phase-contrast images of delicate living
cells [4]. Figure 1 shows a simplified scheme of the method.
Non-resonant laser light illuminates the sample, travels
through, and attains phase shifts that are proportional
to the density of the condensate. The remaining part of
the apparatus serves to measure the acquired phase gradi-
ent using the non-scattered part of the incident light as a
reference. Since the light is non-resonant, the condensate
is hardly disturbed and, indeed, many snapshots or even
entire video sequences of an individual sample have been
taken without significant effect [2].

One might suspect [2], however, that the observation
will nevertheless cause a quantum backaction on the con-
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densate. Imagine that phase-contrast imaging were an
ideal von-Neumann measurement of atomic positions. Af-
ter each measurement the atoms were frozen in position
eigenstates and their future motion were drastically al-
tered. Why is the observed backaction much less dramatic?
How does phase-contrast imaging affect the condensate?
The authors of the method [2] state that “although dis-
persive scattering does not heat up the cloud and destroy
the condensate, it will change the phase as a result of fre-
quency shifts by the AC Stark effect.” This would still
allow “a nonperturbative measurement of the number of
condensed atoms, which is the variable complementary
to the phase (so-called quantum nondemolition measure-
ment).”

In this paper we find that two processes contribute
to the backaction. One is the phase diffusion mentioned
above [2] and the second is a depletion of the condensate.
The authors of reference [2] have already seen indications
of a gradual depletion. However, they have attributed this
to a residual light absorption. We find it likely that their
qualitative experimental findings do in reality indicate the
effect of the quantum backaction.

The physical reason for the quantum backaction is the
local interaction of the meter (the incident light) with
the object (the condensate). Therefore, to understand
the quantum nature of phase-contrast imaging, we must
study the quantum propagation of light in Bose-Einstein
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condensates. To a remarkable degree of accuracy [5] Bose
condensates act simply as dielectric media on the incident
light. In the limit of a large detuning from optical reso-
nances of the atoms we can neglect the imaginary part
of the refraction index, i.e. we consider the condensate a
lossless and dispersionless dielectric medium. Quantum-
optical propagation in bulk, lossless media has been stud-
ied already in detail [6]. A bulk medium, however, is hardly
affected by light traveling through, and the quantum back-
action was rightfully ignored so far [6]. In contrast to bulk
matter, a delicate quantum gas may feel the disturbances
caused by incident light. To understand actio and reactio
of light in quantum gases we essay a quantum theory of
paraxial light propagation in fully quantized, bosonic me-
dia. We start from the safe ground of canonical electro-
magnetism in dielectric media. Then we develop an ap-
proximate theory that allows an analytic calculation of
the backaction. Our theory is inspired by the traditional
paraxial approximation [7] to study classical light prop-
agation. We quantize this model and conclude Section 2
with a discussion of the paraxial field commutator, a crit-
ical quantity that enters the backaction rates. Section 2
thus develops a general, phenomenological theory of non-
resonant light propagation in matter waves.

Section 3 is more specific. Here we derive the master
equation that describes the backaction of the propagating
light on the condensate. The light plays a double role: it
acts both as a meter and as a reservoir. We apply the Born-
Markov approximation of reservoir theory [8] to derive a
general master equation that describes the evolution of all
(condensed and non-condensed) atoms. Then we restrict
our attention to the condensate and analyze the two dissi-
pative processes that turn out to appear due to the quan-
tum backaction: phase diffusion and atomic depletion. We
conclude Section 3 estimating the order of magnitude of
the two effects. We find that the depletion far outweighs
the phase diffusion. Furthermore, our estimation seems to
indicate that the depletion is experimentally significant.
Condensates with few atoms are especially vulnerable to
optical observations, in agreement with experimental evi-

dence [3].

2 Light and matter waves
2.1 Canonical theory

Let us start from the canonical theory of electromagnetism
in a dielectric medium made of a single matter wave .
The total Lagrangian density of light and matter is (in SI
units)

€ €
L=Z(E* - B + OTXOEQWF L. (1)

The first term describes a free electromagnetic field char-
acterized by the potentials U and A that constitute the
field strengths

0A

E=—%

VU, B=VxA. (2)
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The second term plays a double role. The term describes
both the effect of the medium [¢)|? on the light £? and the
backaction of the light on the medium. The third term

L= S = §70) - (VYT — VI (3)

characterizes the center-of-mass motion of the matter
wave in the external potential V. One can show that the
Euler-Lagrange equations generated by minimizing the ac-
tion [ £ d*z are indeed Maxwell’s equations of light in a
dielectric medium with susceptibility €gxo|v|?. Addition-
ally, we obtain the Schrodinger equation of a matter wave
moving in both the external potential V' and in the opti-
cal potential —egxoE?/2. This proves that the Lagrangian
density £ describes the physics of a single matter wave
that interacts non-resonantly with a classical electromag-
netic field.

Traditional quantum optics operates mostly with
Hamiltonians. To find the Hamiltonian density H of our
model we follow the canonical procedure. We calculate the
functional derivatives

5L

—— = —¢ (1 AE=-D

A eo (1 + xo|¥[?)

5L ik oL i

_— = — *7 - = —— 4
50 21/) 5o 21/) (4)

and get
H=-D A+ D —jry) —L=He+ M (5)

with the atomic Hamiltonian density

h? .
Har = 5 (V") (V) + VIf? (6)
and the electromagnetic part
D-E 2
HF=T+D-VU+%BQ. (7)

Observing the Maxwell equation VD = 0 we ignore
DVU = V(DU) in Hr and arrive at the electromagnetic
Hamiltonian density

D2 6002
F=5 77T T 5
2¢0(1+xol9?) 2

This expression is rather unpleasant, since the interaction
between light and matter appears in the denominator (1+
Xo|Y|?). Of course, we could represent (1 + xolt|?)~! as
the geometric series Y o2 (—xo|t|?)”, provided that the
series converges. The lowest-order theory

D2 6062
= — 4+ —
260 2

has a familiar appearance in quantum optics, because the
Hamiltonian density Hgr contains the biquadratic interac-
tion term D?[+)|2. However, if we were to use the lowest-
order Hy in Section 3 to calculate the quantum backac-
tion in phase-contrast imaging, we were to face an infinite
result that clearly contradicts experimental evidence [2].
Can we formulate light propagation in matter waves in a
different way?

B2. (8)

B? — XDy (9)

H
R 260
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2.2 Optical Schrodinger equation

Our canonical field theory of light and matter contains
Maxwell’s equations in the form of the Lagrangian L
or, equivalently, in the Hamiltonian H. In classical op-
tics, however, one hardly uses Maxwell’s equation to de-
scribe paraxial light propagation, but applies a character-
istic approximation which is an optical analogue of the
Schrodinger equation. Let us sketch a brief derivation of
the optical Schrodinger equation [7]. We start from the
wave equation

_ L+ xolvl® O°E

VE- T g ~VVE)

VE =~V [In(1 + xo[¢[*)| E (10)
(a familiar consequence of Maxwell’s equations). We as-
sume the medium Yo|1|? to be weak and to be gradually
varying in space. (A mirror, for example, is excluded from
this model.) We neglect the polarization mixing V(VE)
and consider paraxial propagation in the z-direction with
carrier frequency wg. In the following we will often refer
to the wave number ky = wp/c and to the wave length
A = 27/ko. We use the ansatz

E™) = € exp(ikoz — iwot) (11)

for the positive frequency component E(*) of the electric
field, and differentiate

2 (+)
% ~ exp(ikpz — iwpt) (—in()% — w?}) E
2 (+)
88% ~ exp(ikoz — iwot) (+21k0% _ kg) £ (12)

neglecting the slow variation of the envelope £. Further-
more, we regard

O’E

2 —wixo|Y[*E

Xolv[? (13)

and obtain

. o 10

with V2 being the transversal Laplacian 92 /9z%+0? /0y®.
Finally, we utilize that (0/0z + 0/0ct) exp(ikoz — iwgt)
vanishes and arrive at the optical Schrodinger equation

(0 n
il =
0z

More details about the optical Schrédinger equation (and

beyond) are elaborated in the comprehensive paper [7] by
Marte and Stenholm.

10 VQ ki XQ|’$|2
2V E® - YL _ MOXOL m(H) (15
Cat) 2]60 2 ( )
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2.3 Canonical theory of paraxial propagation

Let us describe the paraxial propagation of light in a
canonical field theory. We consider a fixed polarization,
i.e. a scalar electrical field strength F(T), and express
E() as

EM)(x,t) = <@>U2 ip(x,t).

16

260 ( )
The complex function ¢ represents the optical field in
units of the vacuum noise (fiwg/2¢p)'/2. One can easily
verify that the Lagrangian density

Lp =Lr+ Ly
F_2SD 0z cat(p 28082 cat(p
he . hw
— o (V1) (V1) + = xolel* [0 (17)
0

generates the optical Schrodinger equation (15) as an
Euler-Lagrange equation for . This proves that Ly is
a valid Lagrangian to describe paraxial optical propa-
gation. Lagrangians are defined up to a positive pref-
actor (because we are only interested in their mini-
mum). We have chosen the prefactor of L such that
the coupling term hwoxo|v|*|¢|*/2 = eoxol B’ [¢* ~
coxo(E) + E))2[4p|2/2 is identical to the interaction
term eoxoFE?[%[?/2 in the canonical Lagrangian den-
sity (1). This is necessary, because the term plays the
double role of describing actio and reactio of light and
matter.

In order to find the Hamiltonian density we follow the
royal road of canonical field theory. We calculate the func-
tional derivatives

oL ih

5L ik
_ = — * _— —— 1
5227 5 5 ¥ (18)

and obtain

Ho = 0 (g — gt 0 — ) — Lo

2
= Hwm + HF,
_ihc (0p* L 0P he N
e =5 (e =5 ) + 3 (V) (V1)
hw
0 olelP . (19)

The last term, —AwoXo|e|?|1|?/2, has the familiar appear-
ance of a quantum-optical light-matter interaction. The
other terms of Hy describe the free paraxial propagation
of the optical field.

2.4 Quantum statistics
So far we have formulated the canonical theory of a single

matter wave that interacts non-resonantly with an optical
field. Let us turn to the description of a Bose gas of many
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atoms interacting with photons. The many-body problem
is conveniently formulated in the language of second quan-
tization where operators 1& and ¢ describe the matter and
light field, respectively. The atoms are bosons

[w(xl),W(xQ)} =¥ (x; — x2). (20)

To find the Hamiltonian H of our model we integrate the
Hamiltonian density Hp over three-dimensional space and
apply partial integration. We obtain

IA{:IA{R—FI:II—I—I‘AIM (21)
. o V2

Hp = o [ —i—= — =L ) ¢d® 22
w=te [ ( 3 2k0)¢dx (22)
HI:_TOXO/wTwQPTQPde' (23)

The Hamiltonian Hg describes free paraxial light propa-
gation, H; accounts for the interaction of light and mat-
ter and Hy; describes the quantum gas of the atoms. We
include atomic collisions in our model by adding an atom-
atom interaction term to the potential V', and obtain for
example [9]

2
= [ <_j_mwv2¢ PVt 4 ww) dr. (24)

Note that our results turn out to be independent on the
explicit form of Hy, as long as Hyp is able to maintain a
Bose-Einstein condensate.
An important issue in our theory is the optical field
commutator
Clx1 = x2) = [p(x1), ¢T (x2)] - (25)
If C'(x) is a three-dimensional delta function we obtain the
optical Schrodinger equation (15) for ¢ from the Heisen-
berg equation
op i -

2 Lip A (26)
Is the commutator a delta function? The field operator ¢
is one polarization component of the photon absorption
operator V(x,t) of Mandel and Wolf [10]. The commuta-
tor C'(x) is then given in terms of the density du(k) of the
employed optical modes as [11]

( er)g / e *du(k).

The crucial point is that the mode density du(k) is re-
stricted, since we consider only those modes that obey
paraxial propagation. Therefore, we cannot regard C(x)
as a three-dimensional delta function, in general. However,
the commutator behaves like §(3) (x; —x5) on paraxial test
functions that are supported on the spectrum of C' (that

C(x) =

(27)
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share the same region in k space). To see this we intro-

duce the Fourier transformations C'(k) and f(k) of the
commutator and a test function f(x), and calculate

( 2717)3 / C(k) f(k)e**1d3k

_ (2%)3 / Fk)ex Pk
= f(x1).

This is the defining property of a three-dimensional delta
function. In particular, the field operator ¢ itself is a
paraxial test function, and thus we can safely regard C(x)
as 6 (x; — xp) in integrals containing (. In this way we
obtain indeed from the Heisenberg equation (26) the op-
tical Schrodinger equation for ¢, as is easily verified. This
shows that our quantum theory of paraxial light propaga-
tion is consistent with the classical theory.

On the other hand, for test functions with a broad
spatial spectrum we put

/C(X1 — Xg)f(Xg)d3x2 =

(28)

du(k) = 6(w(k)/wo — 1) d3k
_5 (k; Jko + %(ki +k2)/KE — 1) Bk (29)

We obtain, for example, the commutator per se

/ eik-xdﬂ(k)
iko

2
— Wzﬁ exp [Z(ﬁ + y2) + ikoz}, (30)

1
Clx) = (2m)3

see Appendix A. The commutator resembles the propaga-
tor of a free-particle wave, because C' satisfies

C(x,y, 2 — 0) = A1 8(x) 5 (y). (31)
Since commutators are Green’s functions, we would expect
this property from a paraxial quantum optics.

We have thus seen that the commutator acts differently
on paraxial and on broad-spectrum test functions. The
two faces of the commutator will play two different roles
in the quantum backaction of phase-contrast imaging.

3 Quantum backaction
3.1 Phase-contrast imaging

Phase-contrast imaging is a method to see transparent
objects (living cells, for example) that are otherwise in-
visible. A transparent body does not absorb incident light
but imprints a phase shift that is proportional to the local
density of the object. Manipulations in the focal plane of
the observing lens system transform the image of a phase
object into an equivalent image of an amplitude object [4],
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O L F I

Fig. 1. Scheme of phase-contrast imaging [4]. To produce an
image I of a transparent object O the non-scattered light is
phase-shifted (phase-contrast microscopy) or blocked (dark-
ground method [2]) in the focal plane F of the magnifying
lens L.

see Figure 1. In the absence of absorption the light will
not significantly affect a macroscopic body, but it might
affect a delicate quantum gas.

Formulated in the language of quantum measurement
theory [12], the light is a meter of the atomic object: the
incident light interacts with the atoms, becomes entan-
gled with the atomic sample, and is finally measured in a
classical apparatus (lens system and detectors). The light
field is also a reservoir: the incident beam, say a plane
wave, is scattered on the object into many emerging modes
that form an image. The degree of collecting the scattered
modes and extracting the imprinted phase information de-
termines the performance of the measurement. The overall
performance is ultimately limited by the quantum-optical
phase fluctuations of the incident light and by the perfor-
mance of the apparatus.

On the other hand, the average quantum backaction
(averaged over all experimental runs) is solely determined
by the entanglement between object and meter. This
means that the average backaction is entirely independent
on the performance of the measurement. We can average
over the meter to calculate the backaction on the object.
This averaging leads to a dissipative dynamics of the ob-
ject, formulated as a quantum master equation [13].

3.2 Master equation

We describe the state of all atoms by the density matrix
f1 in the interaction picture

pule) = /P (e iFt/ (32)
and employ standard reservoir theory [8] to derive an
equation of motion for p;. The interaction between light
and matter is weak and, consequently, we can apply
second-order perturbation theory (the Born approxima-
tion [8]). The incident light travels through the object in
a time 7. that is simply given by the extension of the con-
densate divided by the speed of light. After 7. we do not
expect the light to interact further with the atomic sam-
ple. Therefore, the effective memory of the light-matter
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interaction is roughly given by 7. and is very short. So,
in addition to the Born approximation, we can apply the
short-memory (Markov) approximation using an integra-
tion time 79 that is much larger than the time of flight
7. but is still smaller than a characteristic time of the
atomic sample. We will see later in Sections 3.3 and 3.4
that our results do not depend on the precise value of the
memory time 7y, provided that 79 exceeds 7.. This justi-
fies a posteriori our Markovian theory. We obtain in the
Born-Markov approximation [§]

dp i . . S R
£ =z trr [p1(t) pr (1), Hur (t)] — Ly,
t
R 1 - - A

U=z [ o[ B0, [ ). pu(0ypun ()] ' 33)

t—70
with

Hy = —TOXO/IHL'LPI QO%LSOI d3$7

P1(x,t) = e—ilﬁmt/h@(X)eiEIMt/h7

@I(X,t) = e*iHRt/h@(X)eiHRt/h’ (34)
where 7,2 and ¢ are Schrédinger-picture operators, and pir
denotes the density matrix of the light field in the inter-
action picture

pire(t) = oM/ pg (e I/, (35)
The incident light is a plane wave
o o ~ ik _
trr {@7(x1)@(x2)pr } = [ olzz=21),
trr { @7 (x1)@ (x2)(x1)@(x2)pr } = const, (36)

that travels in the z-direction and carries an intensity (en-
ergy flux) of I. Apart from the value of the intensity we
do not need to specify the quantum state of the illuminat-
ing plane wave. The atomic sample is a thin phase object,
thin enough to neglect the optical diffraction inside (the
V2 /2ko term in Eq. (22) of the Hamiltonian Hg). This
means that @1 obeys the equation

[0 10\ .
1(&4‘;&)@1—0 (37)
with the obvious solution
S1(x,t +to) = P1(x — ctey, to). (38)
The total number of atoms is fixed, i.e.
. [ tidta] =0, (39)

We assume the existence of a Bose-Einstein condensate
with wave function 1o (x, t). To describe this phenomenon,

we expand the atomic annihilation operator 1&1()(,75)
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in the interaction picture into a complete, orthonormal

set of atomic modes
t) = Z ¢V(X, t)dl/a
v

/1/)7}()(7 t)ﬂ’u(& t)dgx = 5uua

D, ) (xe.t) = 3% (x1 - xa). (40)

We assume that only the 19 mode (the condensate) is
significantly populated, a,p1 = 0 for v # 0. This means
that we consider the case of zero temperature and that
we neglect the fluctuations [14] of the above-condensate
part, for simplicity. For repulsive atom-atom interactions
the spatial wave function ¥y of the condensate is dom-
inated by the balance between the interatomic repulsion
and the external potential [9]. The state of the condensate
is described by the reduced density matrix pg = tracpr.
For finding the master equation of the condensate state
po, we average the master equation (33) with respect to
the above-condensate part. This procedure requires some
lengthy yet straightforward calculations that we prefer to
present in Appendix B. We obtain the result
dpo

dt
Lijo = I (aoaoagaoﬁo - do&oﬁododo) +He., (42)

= —tI‘AcLﬁI = —Llﬁo - L2/307 (41)

Lapo = (It — ') (alaopo — o poab) +Hee.,  (43)
je. / //G X% — et — t)e.]

:|Owo(x7t)| o', t)* dPwd®a dt!,  (44)

n = / Glere.)dr (45)

G(x) = ﬂx—gm(x)e—iko% (46)

4 he

We see that no macroscopic light force acts on the conden-
sate. This is easy to understand, because light forces are
caused by intensity gradients, and in our case the incident
light is a plane wave with uniform intensity I.

We notice that two dissipative processes, L;py and
Lo pg, contribute to the backaction. The first one is a phase
diffusion (see Sect. 3.3) and the second one is a bosonic
depletion (see Sect. 3.4). What is the physical origin of
the two processes?

For forming an image of the condensate, the incident
light is scattered on the atoms. Therefore the light trans-
fers momentum (and energy) to the atoms. After the scat-
tering a condensate atom may find itself in the condensate
again or it may be expelled, with the (complex) rates I'p
and I, — I'p, respectively. The atom that rejoined the con-
densate will suffer from a loss in phase coherence, causing
phase diffusion, and the expelled atoms will gradually de-
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plete the condensate. Let us look into the two processes
in more detail.

3.3 Phase diffusion

Let us study the phase-diffusion Lipy in the atomic
number-state basis of the condensate

[iImIp (m? —n?)

+Relp(m — n)z] (m|po|n).

(m|Lipoln) =
(47)

We see that the imaginary part of I'p governs a Hamilto-
nian process, i.e. a commutator of py with a Hermitian
effective Hamiltonian that is proportional to the atom
number. We may call it a Kerr-type process.

Let us turn to the complementary picture where we
describe Lipg in the basis of phase states [15] |¢)
(2m)~1 307 exp(ing)|n). We obtain

B 2 \?
—Relp (= + =
© P<8¢1 a¢2)

0? 0? R
o5 37%)1 (b1]polp2)-(48)

The first term is clearly a diffusion process of the atomic
phase (and hence justifies our terminology of calling L, gg
a phase diffusion). The diffusion rate yp is the real part
of Fp.

To calculate vp we utilize that the characteristic time
of the condensate is much larger than the time of flight
7. of the incident light and the integration time 7. This
means that we can regard |i(x,t')|? as being equal to
|90(x,t)|? in the expression (44) of I'p, i.e.

(p1|L1polp2) =

—iIme<

Yol )P = ol O = pox 1) (49)
We apply the Fourier transformations
ﬁ (k) /pO( ) —1kxd3
/G 71k xd3 (50)

and use the convolution theorem to obtain

+70
ictk, 13
o = %% //Mkua> Bkdr.  (51)

—70

Because c7g is large compared with the extension of the
condensate we can approximate

—1
- h / ok, 1) PG ()8 (k= / o)Ak

) of the G function and find

(52)

We utilize the definition (46
that

~ 2 ~
G=LX076(k + koe.)

4 he (53)
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with C'(k) being the Fourier-transformed commutator (25)
expressed in terms (27) of the mode density du(k). We
obtain

7TX
4ﬁ

— 1)dpu(k).
(54)

P =

R

Since a typical Bose-Einstein condensate extends over
many optical wave lengths, the Fourier-transformed spa-
tial distribution pp(k) is narrow compared with the opti-
cal mode density. Furthermore, in equation (54), po(k) is
moved by kge, to an area in k space where it overlaps with
the optical field. The spatial distribution of the conden-
sate thus probes the paraxial optical mode density. In this
case, see Section 2.4, the optical-field commutator acts as
a three-dimensional delta function. We set du(k) = d®k
and obtain, finally,

7TX
4ﬁ

X

or

2
_ 7TX0
=g hCI)\ / (/ po(x,t)d dz dy. (56)

In this way we have expressed the phase-diffusion rate vp
in terms of the spatial probability distribution po(x,t) for
a single condensed atom.

3.4 Depletion

The second backaction process of phase-contrast imaging
is a familiar bosonic depletion. The Liouvillian Ly pg con-
tains a Hamiltonian phase shifting that is proportional
to ImI1, — ImIP and a depletion that occurs at the rate
v, — vp with 41, = Rel1,. We have calculated vp in the
previous section, let us turn to ~1, here. First, we proceed
along similar lines as in the calculation of yp and get

1
(2m)?

(57)

Y = %I

z JEC R

Because

1po (k)| = '/Po(x)eik'xd3x

we see from equations (54, 57) that

< / po(x)d*e =1 (58)

2 VP (59)
The overall depletion rate 1, — yp is non-negative. This
satisfactory result illustrates the consistency of our theory.

Note, that we cannot replace the mode density du(k)
in equation (57) by d®k, as we have done in the case
of phase diffusion, because in equation (57) we integrate
du(k) over a broad spectral range. Therefore, we must use
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Imz

Rez

@

Fig. 2. Integration contours of equation (61) in the complex
2z plane. The closed contour (1) and (2) encircles a (z —i0) ™"
singularity (dot).

the broad-spectrum behavior (30) of the commutator (27)
to calculate 1. We insert the definition (46) of G into
the expression (45) of I, and obtain for 41, = RelT, the
integral

+c7o

/ C(ze,)e Fo7dz,

—CTo

b3,

8 hc (60)

=

Then we apply the explicit formula (30) of the commuta-
tor and get

+cT1o q
7T Xo -3 Z
=TIA
4i he z —10

(% ziZiO B /(2) %) . (61)

with the contours indicated in Figure 2. We use the residue
theorem for the first integral and calculate the second ex-
plicitly. We obtain, finally,

nw =

_ Xy L

2 he 27i

7T XOI)\ 3

4 he (62)

=
Our result is independent on the value of the integra-
tion time 7y and is therefore consistent with the assumed
Markovian behavior of the quantum backaction. Further-
more, equation (62) does not depend on the spatial shape
of the condensate. The loss rate is universal.

Equation (60) shows that the depletion rate 7, de-
pends on the optical-field commutator C(z,y, z) at x,y =
0 integrated over z. So, if the commutator were a three-
dimensional delta function, as in usual quantum optics,
our calculations would give an infinite backaction, a re-
sult in clear contradiction to experimental evidence [2].
At this point the reader will appreciate the reason why
we have developed a quantum theory of paraxial propaga-
tion in Section 2. This theory employs both a biquadratic
interaction (23) of light and matter and a modified com-
mutator (30) that produces a finite backaction.
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On the other hand, a first-order perturbation the-
ory (9) of canonical electromagnetism (8) is also bi-
quadratic in the light-matter interaction. Here the canoni-
cally conjugate variables are A and D and hence we should
postulate that the commutator of A and D is proportional
to a transversal delta function. However, this approach
produces an infinite backaction. Why is perturbation the-
ory not appropriate in the canonical Hamiltonian (8)?
Remember that here we approximate the light-matter in-
teraction (14 xo|¢|?)~! by the first two terms of the ge-
ometric series > (—xo[t|*)”. If ¢ is an operator ¥, as
it should be in the quantum statistics of matter waves,
the particle nature of matter will make the density op-
erator zﬁzﬁ potentially large, regardless how small yq is.
(For example, the density of a localized particle is a three-
dimensional delta function.) Therefore, we must not ap-
proximate (1 —I—Xm[ffi[))’l by 1— ot ¢ and, moreover, we
must not see (1 + yoti1)) ! as a geometric series at all.

Let us add a more intuitive picture to our mathemati-
cal arguments. Phase-contrast imaging involves a particle-
particle scattering of atoms and photons that depends on
the ability of the incident photons to localize. The optical-
field commutator describes potential photon fluctuations
and therefore photon localization as well [16]. Mandel and
Wolf [16] discuss in great detail that photons can mani-
fest themselves as particles only within a volume that is
bounded by the optical wave length. The finite localiza-
tion volume of photons thus leads to a finite quantum
backaction.

3.5 Estimation of the effect

How large is the backaction? Let us estimate solely the
order of magnitude. First, we compare the depletion rate
~1, with the phase-diffusion rate yp. The latter depends on
the spatial shape of the condensate. To find a rough esti-
mate for vp we assume that the condensate extends over
Gz, Gy, and a, in -, y-, and z-direction, respectively, and
we model the Fourier-transformed probability distribution
by the Gaussian

1

1 1
po(k) = exp (——aikfc - §a§k§ - —aik?) . (63)

2 2
We obtain from equation (55) the phase-diffusion rate

72 X3 1

4 he” M2nag)(2may)’ (64)

TP =

or, expressed in terms of the depletion rate 1, wvia
equation (62),

)\2
= oray) (2may) (65)
A typical Bose-Einstein condensate extends over many op-

tical wave lengths A. Therefore,

> vp. (66)
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Depletion far outweighs phase diffusion in the backaction
of phase-contrast imaging.

The depletion rate (62) is proportional to the intensity
of the illumination. A moderate intensity will thus lead to
a low backaction. On the other hand, low intensity light
exhibits large quantum-optical phase fluctuations. To give
a rough estimation, we use the uncertainty product [17]

dpon =~ 1 (67)
of the phase and photon-number fluctuations. A coherent-
state illumination has Poissonian photon statistics with a
variance 6°n that equals the mean 7, i.e.

Pp~nt. (68)
The mean photon number is the product of the aver-
age photon density I/(hwoc) with the optical mode vol-
ume during the observation time At. The mode volume is
roughly given by a cylinder of radius A and length cAt.
Therefore, we obtain

AT At
ANcAt = :
ﬁwocﬂ ¢ T huwg

n =~

(69)

One can see an image of a phase object only when the
produced phase shift A¢ exceeds the phase noise d¢. Let
us estimate the signal A¢ for a condensate of N atoms
with single-atom probability distribution pg(x):

A /(k — ko)dx

21
ol ( l—l—XONpO(x)—l) dz
0
~ XXONW (70)

where 7 denotes the effective two-dimensional density

n= /po(x)dz. (71)
For our simple model (63) the largest value of 7 is
1
= . 72
" 2magay (72)

Let us compare the signal-to-noise ratio A¢/d¢ with the
induced backaction. According to our theory, the incident
light depletes gradually the condensate during the obser-
vation time At. The average number of atoms, tr{a}do po},
decays by the factor of exp(—2vyy,At). We express our re-
sult (62) for the backaction rate 71, in terms of the signal-
to-noise ratio A¢/d¢ using the estimations (68-70), and
find

2
K = 29, At & (ﬂ> (NX?*p) 2, (73)

o0

The more atoms are condensed the lower is the required
intensity for producing a faithful image and, consequently,
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the lower is the induced backaction. On the other hand,
the more macroscopic the wave function is the lower is the
probability density n and the larger is the backaction rate.
We also realize from equation (73) that the depletion fac-
tor exp(—k) is independent of the susceptibility xo (and in
particular of the detuning from atomic resonances), given
a fixed signal-to-noise ratio A¢/d¢. This is easy to under-
stand, because for a large xo the signal A¢ is large, but
so is the backaction (62).

We obtain for the critical value A¢ =~ d¢ the de-
pletion constant x ~ (NA?p)~2. Let us assume that
az a, is roughly 10*\%. In this case the depletion con-
stant x is about N=210'°. A small condensate [3] with
N =~ 10? atoms disappears immediately! Therefore, a con-
tinuous monitoring of the condensate is impossible, in
agreement with experimental observation [3]. Larger con-
densates are more robust. For N a2 10° atoms [2] we obtain
a decay factor exp(—k) of about 1 — ~ 1—1072. The de-
pletion is in the order of one percent which agrees well with
the experimental observation [2]. However, the authors of
reference [2] have interpreted the decay of the condensate
as an residual absorption effect. Our calculations seem to
indicate that the quantum backaction of phase-contrast
imaging has caused the observed depletion via the mo-
mentum transfer of the illuminating light quanta.

Finally, we remark that the use of appropriately
squeezed [18] illumination would enhance the signal-to-
noise ratio at a given, moderate quantum backaction.

4 Summary

Phase-contrast imaging [2] induces a quantum backac-
tion on Bose-Einstein condensates. The backaction con-
sists of two dissipative processes: a phase diffusion and
a gradual depletion of the condensate. If phase-contrast
imaging were a quantum nondemolition measurement of
the condensate density, solely phase diffusion would oc-
cur. We have shown, however, that the depletion is the
dominant process. Our estimations indicate that the quan-
tum backaction is indeed an observable effect that limits
the otherwise destructionless character of phase-contrast
imaging [2]. Condensates with a few number of atoms are
especially vulnerable to optical observations.

In our theoretical study we ignored entirely the absorp-
tion of light (the imaginary part of the refractive index)
and we focused our attention on the quantum backaction.
This is justified in the limit of strong detuning, because
here the absorption virtually vanishes. Note that our the-
ory is only valid as long as the condensate is still signifi-
cantly populated. We have assumed a priori the existence
and the dominance of the condensate.

We developed a quantum theory of paraxial light prop-
agation in many-atom samples that are off-resonant with
respect to the light. This theory goes beyond the immedi-
ate purpose of the present paper and may find wider appli-
cation in the fascinating subject of combining concepts of
quantum measurement theory with quantum-optical prop-
agation and the statistical theory of quantum gases.
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Appendix A

In this appendix we calculate explicitly the optical field
commutator C'(x) and we discuss a few general properties
of C(x). We start from the expression (27) of C(x) in
terms of the mode density du(k),

(271r)3 / e dp(l),

du(k) =6 (kz/ko + %(kg + k2) /G — 1) d3k. (A1)

C(x) =

To calculate the Fourier integral we introduce dimension-
less variables, k; = ko (», ky = ko (y with

e = ho — gko(¢2 +C2), (A.2)

and obtain
0t = e [
- (2

—o00
“+oo
<
—o00

In equation (A.3) we have given z an infinitesimally small
yet negative imaginary part —i0 to ensure that the in-
tegrals converge. The calculation of equation (A.3) is
straightforward, and we obtain the result

k2
Cx)=—-2 e (2% +y?) + ikoz
&) = {2z —10) P {22 (@™ +y7) +iko

Let us discuss a few elementary properties of the paraxial
commutator. First, we see from the mode density in equa-
tion (A.1) that C(x) obeys the partial differential equation

The commutator behaves like a paraxial monochromatic
wave that travels freely in space without being influenced
by a medium. Furthermore, when z approaches zero, the
commutator C(x,y,z — 0) vanishes effectively for x,y #
0, because the exponential function in formula (A.4) is
highly oscillating in this limit. To see what happens at
x,y = 0 we integrate C(x,y, z — 0) with respect to z and
y. Since

/W/WX 5o (22 1 42)| dad
e g @ )| dedy
_ = iko o) 1 5
= 27r/0 exp<2zr>d(2r)

z
7T1k0

efi(f, ko(2—i0)/2+ikox (s ¢,

eiiCSkO(zin)/QJrikoyCydCy. (A.?))

iko

. (A4)

(A.5)
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we obtain, finally,

ko

C(z,y,z — 0) =

2,.0(@)d(y)- (A7)

The commutator C'(x) appears as a paraxial Green’s func-
tion.

Appendix B

In this appendix we derive the master equation (41) that
describes the quantum backaction of phase-contrast imag-
ing on Bose-Einstein condensates. We start from the gen-
eral master equation (33) and proceed in two steps. First,
we reformulate the general master equation (33) utilizing
the fact (36) that the incident light is a plane wave and
using the conservation (39) of the total number of atoms.
Then we average the resulting Liouvillian with respect to
the above-condensate part. This, finally, gives us the de-
sired master equation for the condensate.

To begin, let us first consider the Hamiltonian term
trr[P101R, ﬁn] in equation (33) that describes the average
light force on the atomic sample. We calculate the com-
mutator of the interaction Hamiltonian and the total den-
sity matrix in the Schrédinger picture using equation (36)
and the conservation of the total number of atoms,
equation (39),

o I s R
trr[H1, ppr| = 2 X0 wad%,p} =0. (B.1)
Consequently, we get in the interaction picture
trR[ﬁHaﬁIﬁIR] =0. (BQ)

The overall light force of an uniform illumination vanishes.

Let us turn to the Liouvillian part Lg; of the mas-
ter equation (33). First we calculate the correlation func-
tions (36) of the incident light in the interaction picture.
We neglect optical diffraction inside the atomic sample,
see equation (38), and apply equation (36) to get

trr {@; (x1,t1)Pr1(x2, tz)ﬁIR(tz)}
= trg {@f (x1 — c(t1 — ta)e., t2)Pr(x2, tz)ﬁIR(tz)}
— trw {e 0T (xy — ety — ta)e.)@(xe)pr t)e M }

= trg {@T(Xl — C(t1 — tz)e )& (XQ)/)R( )}

= > eXp[ik()(ZQ —2z1+ C(tl — tg))], (B?))
and along similar lines
trr {@I (1, t1)P] (X2, t2)P1(x1, 1) B1 (2, t2) ﬁIR}
= const. (B.4)
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To evaluate the Liouvillian Ly in equation (33) we calcu-
late the double commutator using the shorthand notation

Ui = Ur(xivty), P = o1(xi, i),

trg {[ﬁn(h) [Hi(t2), ﬁIﬁIR]]}

hzw ar A .

= 0 2//trR wﬂﬂl w o P <P2/)IPIR
—¢1w1301<p1p1p1Rw2w2 PLP
—%wwwzpwmwl%@{
PR PP pa] i ¢l @ } dPay d’zs
h2w0 9

=520 [ [ (916a8bain ~ dhbapilin)

at oA

X trg {301 301<P2<P2ﬁ1R} d*z1 dzy + Hee.  (B.5)

Then we utilize the commutator relation of the radiation
field (25) and the diffraction-less propagation (38) in the
interaction zone to write trR{cﬁI@lcﬁzcﬁgﬁm} in normal
order,

trr {@Isﬁl@; PIR} =trr {@I%@l@zﬁm}

+1trg { 2PIR} (x1 —x2 —c(t1 —t2)ez). (B.6)

The normally-ordered correlation function (B.4) is con-
stant, and so trR{@J{gé;gbl@gﬁm} does not contribute to
the double commutator (B.5), when we take into account
the atom-number conservation (39). To proceed with the
remaining term, we utilize equation (B.3) to express the
correlation function trg {31 @2 pir }, define in equation (46)
the function G(x), and get

= [ [ [ (nibiagn — dbdapitin)

x G(x1 —xg — c(t —t)e,)d®xy Az dt’ + He. (B.7)

In this way we have found the Liouvillian that describes
the quantum backaction of an uniform illumination on the
total atomic sample.

So far we have not made any essential assumption on
the state of the atoms and in particular we have not ex-
ploited the fact that the atoms are Bose-condensed. To
incorporate Bose-Einstein condensation we expand the
atomic annihilation operator LZI in the interaction picture
in a complete, orthonormal basis of atomic modes, see
equation (40). We assume that only v is significantly oc-
cupied and average with respect to the above-condensate
part being in the vacuum state. (We utilize that a, p; van-
ishes for v # 0.) For this we must calculate some atomic
correlation functions that occur in the Liouvillian (B.7).
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We abbreviate tracpr by po, and find

trac {ﬂ@%%ﬂl} = (a})2a2|vho(x1, t1) [0 (X2, t2)]fo,

(B.8)

trac {&Wnﬁl} = d$&0|w0(x, 1)|? po, (B.9)
trac {@@2/31@1;1} = trac {@doﬁldzwl}

X o (x2, t2)Yg(x1,t1), (B.10)

trac {@&0/31&8221} = ZU"AC {dlfloﬁld%&u}

Vi

X Py (X2, t2) (%1, 1)
=Y trac {aiaoﬁlaj)ay}
X Py (X2, t2)hy (X1, 1)

= abaopoadaoty (xz, t2)to(x1, t)

+ agpods Z Py (X2, t2)Y (X1, 1)
v#0

= agopoddaoty (X2, t2)tho(x1,t1)
+ doﬁo&gé@) (Xl — Xg)

— Gopoad vy (X, t2)o (X1, t1).
(B.11)

We apply the results (B.8-B.11) to obtain after averag-
ing of the Liouvillian (B.7) with respect to the above-
condensate part the final master equation (41).
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